Maple 2022 Questions and Posts

These are Posts and Questions associated with the product, Maple 2022

I would like to express the decision variables Pn_W,w_W,Ce_W,i1_W,Pn_D,w_D,Ce_D...other variables...​ in a compact form. Since their analytical expressions are lengthy, I want to identify terms and define appropriate composite parameters to simplify their representation.

Q_shorten_1.mw

For example ,  Suppose the original expression is: q := ((Cn - a)^2 + (P - d - b)*x^2 + Cn - a - b)/y(Cn - a)^2

Lets say Cn - a =X , P - d - b =S

Then the expression can be rewritten as: q = (X^2 + S*x^2 + X - b)/yX^2

I’m having trouble solving this. Any suggestions would be helpful.

NULL

restart

``

with(Optimization); with(plots); with(Student[VectorCalculus]); with(LinearAlgebra)

``

ineq := simplify((Cr*rho0*t*(Cr*alpha*b-alpha-1)*d^2+((alpha*((-g*i2+a)*Cr+2*Crm+2*c+3*t-2*Pr)*Cr*b+((g*i2-a)*Cr-2*Crm-2*c-2*t+2*Pr)*alpha+(g*i2-a)*Cr-2*t)*rho0+(2*(Cr*b-1))*(sigma*t+Cn-Pr+delta-1))*d+(alpha*((-g*i2+a)*Cr+2*Crm+2*c+2*t-2*Pr)*b+2*g*i2-2*a)*rho0+2*b*(sigma*t+Cn-Pr+delta-1))^2 > (((alpha*Cr*((-g*i2+a)*Cr+2*Crm+2*c-2*Pr)*b+((g*i2-a)*Cr-2*Crm-2*c+2*Pr)*alpha-(-g*i2+a)*Cr)*rho0+(2*(Cr*b-1))*(delta+Cn-Pr-1))*d+(alpha*((-g*i2+a)*Cr+2*Crm+2*c-2*Pr)*b+2*g*i2-2*a)*rho0+2*b*(delta+Cn-Pr-1))^2)

(((alpha*Cr*((-g*i2+a)*Cr+2*Crm+2*c-2*Pr)*b+((g*i2-a)*Cr-2*Crm-2*c+2*Pr)*alpha-(-g*i2+a)*Cr)*rho0+2*(Cr*b-1)*(delta+Cn-Pr-1))*d+(alpha*((-g*i2+a)*Cr+2*Crm+2*c-2*Pr)*b+2*g*i2-2*a)*rho0+2*b*(delta+Cn-Pr-1))^2 < (Cr*rho0*t*(Cr*alpha*b-alpha-1)*d^2+((alpha*((-g*i2+a)*Cr+2*Crm+2*c+3*t-2*Pr)*Cr*b+((g*i2-a)*Cr-2*Crm-2*c-2*t+2*Pr)*alpha+(g*i2-a)*Cr-2*t)*rho0+2*(Cr*b-1)*(sigma*t+Cn-Pr+delta-1))*d+(alpha*((-g*i2+a)*Cr+2*Crm+2*c+2*t-2*Pr)*b+2*g*i2-2*a)*rho0+2*b*(sigma*t+Cn-Pr+delta-1))^2

(1)

  

``extra := indets(ineq,And(name,Not(constant))) >~ 0;

{0 < Cn, 0 < Cr, 0 < Crm, 0 < Pr, 0 < a, 0 < alpha, 0 < b, 0 < c, 0 < d, 0 < delta, 0 < g, 0 < i2, 0 < rho0, 0 < sigma, 0 < t}

(2)

 

(solve({ineq}, t) assuming extra[]);

 

``

Download Q_solve.mw

I require the condition for equations  C1<C2<C4​, with all parameters strictly positive and subject to the constraint t > t1​.
I want to solve for the variables t and s. Specifically, what are the analytical conditions on t that ensure C2>C1​, and what are the analytical conditions on s that ensure C4 > C2 >C1​ ?

I attempted to solve this , but I keep encountering errors.
Q_solving_t_and_s.mw

In the plot shown below, one of the axes is not visible, and one of the lines inside the graph is also missing. Is there an error in the plotting syntax that is causing this issue? Could anyone please identify the mistake and suggest how to correct it

All_plots_Question.mw

I am facing three issues while plotting my plot.I need help modifying the syntax:

  1. I am unable to correctly display superscripts and subscripts for Pi[m]^WD < Pi[m]^D inside the graph region

  2. I cannot format the subscript for i__2 on the x-axis.

  3. A horizontal dotted line appears parallel to the x-axis at y=0.5; how can I remove this line?

    Question_1_regional.mw

In my Maple program, the voltage output of the system is computed as a time-domain response under different time intervals. The response curve has already been successfully obtained and plotted.

However, I would like to further extract and plot the envelope of this response. I initially attempted to determine the envelope by identifying the extrema of the signal, i.e., by solving the condition that the time derivative of the response equals zero. Unfortunately, this approach consistently leads to error messages, and I am not sure whether the issue is related to symbolic differentiation, numerical noise, or the implementation itself.

Could anyone please advise on:

  1. The correct way to extract an envelope curve from a time-domain signal in Maple?

  2. Whether there are alternative or more robust methods (e.g., based on numerical post-processing, signal processing techniques, or built-in Maple tools) to obtain the envelope, especially for numerically computed responses?

Any suggestions or example commands would be greatly appreciated.

Thank you in advance for your help.
numsolve-1229.mw

How can we determine the solution of the  system

Udot1 := -beta*V;
Vdot1 := beta*U;
Pdot1 := Q;
Qdot1 := 0;

and with initial conditions 

 U(0) := U[0];
V(0) := V[0];
P(0) := P[0];
Q(0) := Q[0];

Ode1.mw

In this maple file i try to find normal form and limit cycle of this jerk system but l don't know find like a paper did?

av.mw

I'm trying to reproduce a manual asymptotic analysis (see the attached pdf file) in Maple for a two-soliton solution. Specifically, I want to evaluate the limit of a function (e.g., r[2]r[2]r[2] or ∂xq[2]\partial_x q[2]∂x​q[2]). How can I properly perform the limit a2→+−∞ as t​→+−∞ in Maple, either by substitution or by reparametrization, in order to study the asymptotic behavior of a multi-variable expression symbolically? 

restart

with(Student[Calculus1])

lambda1 := I*mu1; lambda2 := I*mu2; a1 := -2*x/mu1+mu1*t; a2 := -2*x/mu2+mu2*t

numer_r := lambda2*cosh(a1)-lambda1*cosh(a2)

denom_r := (lambda1^2+lambda2^2)*cosh(a1)*cosh(a2)-2*lambda1*lambda2*(1+sinh(a1)*sinh(a2))

r2 := I*(-lambda1^2+lambda2^2)*numer_r/denom_r

numer_dq := (sinh(a1)-sinh(a2))^2; denom_dq := ((lambda1^2+lambda2^2)*cosh(a1)*cosh(a2)-2*lambda1*lambda2*(1+sinh(a1)*sinh(a2)))^2

dq2 := 1-2*(lambda1^2-lambda2^2)^2*numer_dq/denom_dq

limit_r2 := limit(r2, a2 = -infinity); simplify(limit_r2)

Error, invalid input: limit expects its 2nd argument, p, to be of type Or(name = algebraic,set(name = algebraic),list(name = algebraic)), but received -2*x/mu2+mu2*t = -infinity

 

limit_r2

(1)

limit_r2_pos := limit(r2, a2 = infinity); simplify(limit_r2_pos)

Error, invalid input: limit expects its 2nd argument, p, to be of type Or(name = algebraic,set(name = algebraic),list(name = algebraic)), but received -2*x/mu2+mu2*t = infinity

 

limit_r2_pos

(2)

NULL

Download asymptotic.mw cooocp_(2).pdf

Any suggestions for reformulating the limit or change of variables would be appreciated. 

I checked the ConsistencyTest of the system of equations but no output with 'true' or 'False'. Is it not work in 'DEtools'? Download consistency.mw

I am working with a symbolic expression in Maple that combines exponential terms. How can exponential terms be fully converted into hyperbolic functions? 

restart

with(Student[Precalculus])

interface(showassumed = 0)

assume(x::real); assume(t::real); assume(lambda1::complex); assume(lambda2::complex); assume(a::real); assume(A__c::real); assume(B1::real); assume(B2::real); assume(delta1::real); assume(delta2::real); assume(`&omega;__0`::real); assume(g::real); assume(l__0::real)

expr := A__c*exp(-(2*I)*(A__c^2*g*l__0^2-1/2)*`&omega;__0`*t)+(2*I)*exp(-I*(A__c^2*g*l__0^2-1/2)*`&omega;__0`*t)*(sqrt(delta1+I*delta2-sqrt(-A__c^2*g+(delta1+I*delta2)^2))*exp(-2*sqrt(-A__c^2*g+(delta1+I*delta2)^2)*(l__0^2*(I*delta1-delta2)*t*`&omega;__0`+(1/2)*x))-sqrt(delta1+I*delta2+sqrt(-A__c^2*g+(delta1+I*delta2)^2))*exp(sqrt(-A__c^2*g+(delta1+I*delta2)^2)*(x+(2*I)*`&omega;__0`*l__0^2*(delta1+I*delta2)*t)))*(sqrt(-delta1+I*delta2-sqrt(-A__c^2*g+(delta1-I*delta2)^2))*exp((2*(l__0^2*(I*delta1+delta2)*t*`&omega;__0`-(1/2)*x))*sqrt(-A__c^2*g+(delta1-I*delta2)^2))-sqrt(-delta1+I*delta2+sqrt(-A__c^2*g+(delta1-I*delta2)^2))*exp(-(2*(l__0^2*(I*delta1+delta2)*t*`&omega;__0`-(1/2)*x))*sqrt(-A__c^2*g+(delta1-I*delta2)^2)))*delta2/(exp(I*(A__c^2*g*l__0^2-1/2)*`&omega;__0`*t)*(((-sqrt(delta1+I*delta2-sqrt(-A__c^2*g+(delta1+I*delta2)^2))*sqrt(-delta1+I*delta2+sqrt(-A__c^2*g+(delta1-I*delta2)^2))-sqrt(delta1+I*delta2+sqrt(-A__c^2*g+(delta1+I*delta2)^2))*sqrt(-delta1+I*delta2-sqrt(-A__c^2*g+(delta1-I*delta2)^2)))*exp((2*(l__0^2*(I*delta1+delta2)*t*`&omega;__0`-(1/2)*x))*sqrt(-A__c^2*g+(delta1-I*delta2)^2))+exp(-(2*(l__0^2*(I*delta1+delta2)*t*`&omega;__0`-(1/2)*x))*sqrt(-A__c^2*g+(delta1-I*delta2)^2))*(sqrt(delta1+I*delta2-sqrt(-A__c^2*g+(delta1+I*delta2)^2))*sqrt(-delta1+I*delta2-sqrt(-A__c^2*g+(delta1-I*delta2)^2))+sqrt(-delta1+I*delta2+sqrt(-A__c^2*g+(delta1-I*delta2)^2))*sqrt(delta1+I*delta2+sqrt(-A__c^2*g+(delta1+I*delta2)^2))))*exp(-2*sqrt(-A__c^2*g+(delta1+I*delta2)^2)*(l__0^2*(I*delta1-delta2)*t*`&omega;__0`+(1/2)*x))+exp(sqrt(-A__c^2*g+(delta1+I*delta2)^2)*(x+(2*I)*`&omega;__0`*l__0^2*(delta1+I*delta2)*t))*((sqrt(delta1+I*delta2-sqrt(-A__c^2*g+(delta1+I*delta2)^2))*sqrt(-delta1+I*delta2-sqrt(-A__c^2*g+(delta1-I*delta2)^2))+sqrt(-delta1+I*delta2+sqrt(-A__c^2*g+(delta1-I*delta2)^2))*sqrt(delta1+I*delta2+sqrt(-A__c^2*g+(delta1+I*delta2)^2)))*exp((2*(l__0^2*(I*delta1+delta2)*t*`&omega;__0`-(1/2)*x))*sqrt(-A__c^2*g+(delta1-I*delta2)^2))-exp(-(2*(l__0^2*(I*delta1+delta2)*t*`&omega;__0`-(1/2)*x))*sqrt(-A__c^2*g+(delta1-I*delta2)^2))*(sqrt(delta1+I*delta2-sqrt(-A__c^2*g+(delta1+I*delta2)^2))*sqrt(-delta1+I*delta2+sqrt(-A__c^2*g+(delta1-I*delta2)^2))+sqrt(delta1+I*delta2+sqrt(-A__c^2*g+(delta1+I*delta2)^2))*sqrt(-delta1+I*delta2-sqrt(-A__c^2*g+(delta1-I*delta2)^2)))))*(-delta1+I*delta2)*(delta1+I*delta2))

A__c*exp(-(2*I)*(A__c^2*g*l__0^2-1/2)*omega__0*t)+(2*I)*exp(-I*(A__c^2*g*l__0^2-1/2)*omega__0*t)*((delta1+I*delta2-(-A__c^2*g+(delta1+I*delta2)^2)^(1/2))^(1/2)*exp(-2*(-A__c^2*g+(delta1+I*delta2)^2)^(1/2)*(l__0^2*(I*delta1-delta2)*t*omega__0+(1/2)*x))-(delta1+I*delta2+(-A__c^2*g+(delta1+I*delta2)^2)^(1/2))^(1/2)*exp((-A__c^2*g+(delta1+I*delta2)^2)^(1/2)*(x+(2*I)*omega__0*l__0^2*(delta1+I*delta2)*t)))*((-delta1+I*delta2-(-A__c^2*g+(delta1-I*delta2)^2)^(1/2))^(1/2)*exp(2*(l__0^2*(I*delta1+delta2)*t*omega__0-(1/2)*x)*(-A__c^2*g+(delta1-I*delta2)^2)^(1/2))-(-delta1+I*delta2+(-A__c^2*g+(delta1-I*delta2)^2)^(1/2))^(1/2)*exp(-2*(l__0^2*(I*delta1+delta2)*t*omega__0-(1/2)*x)*(-A__c^2*g+(delta1-I*delta2)^2)^(1/2)))*delta2/(exp(I*(A__c^2*g*l__0^2-1/2)*omega__0*t)*(((-(delta1+I*delta2-(-A__c^2*g+(delta1+I*delta2)^2)^(1/2))^(1/2)*(-delta1+I*delta2+(-A__c^2*g+(delta1-I*delta2)^2)^(1/2))^(1/2)-(delta1+I*delta2+(-A__c^2*g+(delta1+I*delta2)^2)^(1/2))^(1/2)*(-delta1+I*delta2-(-A__c^2*g+(delta1-I*delta2)^2)^(1/2))^(1/2))*exp(2*(l__0^2*(I*delta1+delta2)*t*omega__0-(1/2)*x)*(-A__c^2*g+(delta1-I*delta2)^2)^(1/2))+exp(-2*(l__0^2*(I*delta1+delta2)*t*omega__0-(1/2)*x)*(-A__c^2*g+(delta1-I*delta2)^2)^(1/2))*((delta1+I*delta2-(-A__c^2*g+(delta1+I*delta2)^2)^(1/2))^(1/2)*(-delta1+I*delta2-(-A__c^2*g+(delta1-I*delta2)^2)^(1/2))^(1/2)+(-delta1+I*delta2+(-A__c^2*g+(delta1-I*delta2)^2)^(1/2))^(1/2)*(delta1+I*delta2+(-A__c^2*g+(delta1+I*delta2)^2)^(1/2))^(1/2)))*exp(-2*(-A__c^2*g+(delta1+I*delta2)^2)^(1/2)*(l__0^2*(I*delta1-delta2)*t*omega__0+(1/2)*x))+exp((-A__c^2*g+(delta1+I*delta2)^2)^(1/2)*(x+(2*I)*omega__0*l__0^2*(delta1+I*delta2)*t))*(((delta1+I*delta2-(-A__c^2*g+(delta1+I*delta2)^2)^(1/2))^(1/2)*(-delta1+I*delta2-(-A__c^2*g+(delta1-I*delta2)^2)^(1/2))^(1/2)+(-delta1+I*delta2+(-A__c^2*g+(delta1-I*delta2)^2)^(1/2))^(1/2)*(delta1+I*delta2+(-A__c^2*g+(delta1+I*delta2)^2)^(1/2))^(1/2))*exp(2*(l__0^2*(I*delta1+delta2)*t*omega__0-(1/2)*x)*(-A__c^2*g+(delta1-I*delta2)^2)^(1/2))-exp(-2*(l__0^2*(I*delta1+delta2)*t*omega__0-(1/2)*x)*(-A__c^2*g+(delta1-I*delta2)^2)^(1/2))*((delta1+I*delta2-(-A__c^2*g+(delta1+I*delta2)^2)^(1/2))^(1/2)*(-delta1+I*delta2+(-A__c^2*g+(delta1-I*delta2)^2)^(1/2))^(1/2)+(delta1+I*delta2+(-A__c^2*g+(delta1+I*delta2)^2)^(1/2))^(1/2)*(-delta1+I*delta2-(-A__c^2*g+(delta1-I*delta2)^2)^(1/2))^(1/2))))*(-delta1+I*delta2)*(delta1+I*delta2))

(1)

NULL

Download simplify.mw

  1. Further simplify the expression under three physical scenarios, assuming delta__1 > 0:

    • Case (i): When A__c = 0

    • Case (ii): When delta__1 > g * A__c

    • Case (iii): When delta__1 < g * A__c

I have created an animation of a flexible octahedron (following Bricard) with Maple.   It shows the six vertices and twelve edges.  How do I add the faces (triangles)?  Can the animation show their lines of intersection?

restart;
with(geometry);

triangle(ABC, [point(A, a, b), point(B, c, d), point(C, e, f)]);
AreCollinear: hint: could not determine if a*d-a*f-b*c+b*e+c*f-d*e is zero
Error, (in geometry:-triangle) not enough information: the three points might be AreCollinear

assume(a*d - a*f - b*c + b*e + c*f - d*e <> 0);

triangle(ABC, [point(A, a, b), point(B, c, d), point(C, e, f)]);
                              ABC

area(ABC);
                   

What does the ~ after the point variables supposed to mean?

The workbook includes the excel data file but I also included the worksheet and data file separate for versions that can't load workbooks.

 

Average_World_Temperature_workbook-.maple

Average_World_Temperature_since_1850_worksheet.mw

HadCRUT5.zip

I have just started to use Maple workbook (*.maple). In the workbook, there are 4 worksheets: "main.mw","calc1.mw","calc2.mw","calc3.mw". In "main.mw", I plot variables saved from "calc?.mw". This works. However, when I make changes in one of the worksheet "calc?.mw" and get the new expressions for the variables, they are not updated in "main.mw". I deleted the variables being changed but "main.mw" still run and show the old expressions of these variables.

How do I refresh so that "main.mw" will show the updated variables from "calc?.mw"?

Thanks.

1 2 3 4 5 6 7 Last Page 1 of 43